INTRODUCTION

- High instantaneous wind penetration: 50% - 60% - 70% ...
- Occasionally operating points close to technical and physical limits e.g. voltage stability
- Costly remedies: load shedding and network reinforcement
- Well chosen allocation of wind capacity

Objective(s):

- Enhance Voltage Stability

METHODOLOGY

- Two set of variables
- Multiple wind and demand levels
- Voltage stability index: loadability margin
- Voltage Stability Constrained Optimal Power Flow
- Unit Commitment fed in VSCOPF iteratively
- Maximize the minimum loadability margin

TEST SYSTEM

- IEEE 73 Bus
- 30 candidate buses for wind capacity allocation
- 80 wind-demand scenarios

RESULTS

- Minimum loadability margin in first and last iterations

<table>
<thead>
<tr>
<th>Unit Commitment</th>
<th>Wind Capacity Allocation Iteration</th>
<th>Number of Items in Critical List</th>
<th>Minimum Loadability Margin, κ, (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>80</td>
<td>38.34</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>84</td>
<td>30</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>80</td>
<td>34.33</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>126</td>
<td>31.08</td>
</tr>
</tbody>
</table>

- Pattern of wind capacity allocation (MW)

- Test system loadability margin

- Cumulative probability of loadability margin across all buses and wind-demand scenarios.

CONCLUSIONS

- The pattern of wind capacity allocation affects both the voltage stability and the total wind capacity allocated in the system
- Wind capacity allocation to certain buses in the system may increase voltage stability margin
- A well chosen wind capacity allocation has the potential for improving voltage stability margin.

ACKNOWLEDGEMENT

This work was conducted in the Electricity Research Centre, University College Dublin, Ireland, which is supported by the Electricity Research Centre’s Industry Affiliates Programme (http://erc.ucd.ie/industry/).

Mostafa Bakhtvar is funded through Science Foundation Ireland Grant Number SFI/09/SG/12180.